GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH: Mechanical/Production/Manufacturing Engineering SUBJECT NAME: Computer Aided Manufacturing SUBJECT CODE: 2171903 BE Semester VII

Type of course: Core

Prerequisite: Manufacturing Processes-I, Production Technology

Rationale:

Computer Aided Manufacturing is highly demanded area now a day. Computer Aided Manufacturing deals with Design of components to manufacturing and also includes Planning and controlling the processes. Industries widely use CNC, FMS and Robotics technology now a day. Students will be familiar with its hardware and software and also able to write programs for machining.

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks							
				Theor	eory Marks		Practical Marks		Aarks	Total
L	Т	Р	С	ESE	PA (M)		PA (V)		PA	Marks
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment; OEP-Open Ended problem; AL-Active learning;

Learning Objectives:

- 1. To build concrete foundation for their core branch as a thinker, inter disciplinary thoughts
- 2. To educate students by covering different aspects of computer Aided Manufacturing.
- 3. To create strong skills of writing CNC programs, PLC programs.
- 4. To educate students to understand different advances in manufacturing system like: GT, CAPP and FMS
- 5. To educate students by covering robotics and different material handling system required in manufacturing shop floor.
- 6. To educate students by covering different Integrated production management system.

Content:

Unit No.	Торіс	Teaching
		Hours
1	Computer Aided Manufacturing:	04
	CAM Concepts, Objectives & scope, Nature & Type of manufacturing	
	system, Evolution, Benefits of CAM, Role of management in CAM,	

	Concepts of Computer Integrated Manufacturing, Impact of CIM on	
	personnel, Role of manufacturing engineers, CIM Wheel to understand	
	basic functions.	
2	NC/CNC Machine Tools: NC and CNC Technology: Types,	09
	Classification, Specification and components, Construction Details,	
	Controllers, Sensors and Actuators, CNC hardware: Re circulating ball	
	screw, anti friction slides, step/servo motors. Axis designation,	
	NC/CNC tooling. Fundamentals of Part programming. Types of	
	format. Part Programming for drilling, lathe and milling machine	
	operations, subroutines, do loops, canned Cycles, parametric sub	
	routines.	
3	Programmable Logic Controllers: Relay Device components,	02
	Programmable controller architecture, programming a programmable	
	controller, tools for PLC logic design.	
4	Group Technology and CAPP: Introduction, part families, part	06
	classification and coding systems: OPITZ, PFA, FFA, Cell design, rank	
	order clustering, composite part concepts, Benefits of group	
	technology. Approaches to Process Planning, Different CAPP system,	
	application and benefits.	
5	Flexible Manufacturing System: Introduction & Component of FMS, Needs of FMS general FMS consideration Objectives Types of	07
	flexibility and EMS EMS lay out and advantages. Automated material	
	handling system: Types and Application Automated Storage and	
	Retrieval System. Automated Guided Vehicles. Cellular manufacturing.	
	Tool Management, Tool supply system, Tool Monitoring System,	
	Flexible Fixturing, Flexible Assembly Systems.	
6	Robot Technology: Introduction: Robot Anatomy, Laws of Robot,	07
	Human System and Robotics, Coordinate system, Specifications of	
	Robot. Power sources, actuators and Transducers, Robotic Sensors,	
	Grippers, Robot Safety, Robot Programming and Robot Applications,	
	Economic Considerations of Robotics system, Robot Kinematics and	
	Dynamics, Robot Arm Dynamics. Concepts of Computer Vision and	
	Machine Intelligence.	
7	Integrated Production Management System: Introduction, PPC	07
	fundamentals, Problems with PPC, MRP-I, MRP-II. Just in Time	
	philosophy: JIT & GT applied to FMS, concepts of Expert System in	
	Manufacturing and Management Information System.	10
	I otal Hours	42

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	15	15	10	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Computer Aided Manufacturing by Tien Chien Chang, Pearson Education
- 2. Automation, Production Systems and Computer Integrated Manufacturing by Mikell P Groover, Pearson Education
- 3. Robotics Technology and Flexible Automation, by S R Deb, S Deb, McGraw Hill Education Private Limited.
- 4. Flexible Manufacturing Cells and System -William. W. Luggen Hall, England Cliffs, Newjersy
- 5. P. Radhakrishnan, "Computer Numerical Control ", New Central Book Agency, 1992.
- 6. Computer integrated manufacturing -S. Kant Vajpayee Prentice Hall of India.
- 7. System Approach to Computer Integrated Manufacturing. Nanua Singh, Wiley and sons Inc, 1996.
- 8. Computer Aided Manufacturing- Rao, Tewari, Kundra, McGraw Hill, 1993
- 9. CAD/CAM, Principles and Applications –P N Rao, McGraw Hill, 2010
- 10. CAD/CAM, Introduction, -Ibrahim Zeid, Tata McGraw Hill, 2007

Course Outcome:

After learning the course the students should be able to:

- 1. Students will describe basic concepts of CAM application and understand CAM wheel
- 2. Students will prepare CNC programs for manufacturing of different geometries on milling and lathe machines.
- 3. Students will prepare logic diagram for different application of automation.
- 4. Students will classify different components using different techniques of group technology
- 5. Students will prepare Process planning for different components
- 6. Students will select layouts of FMS for industrial applications
- 7. Students will describe Robot for preliminary industrial applications like pick and place.
- 8. Student will identify application of PPC, JIT, MRP-I, MRP-II, and Expert system to CAM

List of Experiments:

- 1. Study of Computer Integrated System: Basics, Types of Manufacturing, role of management and CIM wheel
- 2. NC/CNC technology: Definition, Classification, Specification, Construction details, Sensors and Actuators, and different controllers.
- 3. CNC part Programming: Lathe and Milling jobs

- 4. Exercise on PLC for Simple problems.
- 5. Problems on GT and Industrial case problems on coding
- 6. Problems on CAPP and Industrial case problems
- 7. Study of Flexible Manufacturing system
- 8. Study of Robotics Technology
- 9. Problems on MRP-I, MRP-II
- 10. Study of Expert System in Manufacturing and MIS

Design based Problems (DP)/Open Ended Problem:

- 1. Industrial case problems on CNC programming
- 2. PLC programming on simple cases
- 3. Case problems on GT and CAPP
- 4. Problems on Understanding of Kinematics of Robotics

Major Equipment:

- **1.** CNC Machine
- **2.** Industrial Robot
- 3. Programming Software.

List of Open Source Software/learning website:

www.nptel.ac.in/ Prentice

Videos on CNC programming, PLC, Robotics and FMS